Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.10.540233

ABSTRACT

Few studies have addressed the impact of maternal mild/asymptomatic SARS-CoV-2 infection on the developing neonatal immune system. In this study, we analyzed umbilical cord blood and placental chorionic villi from newborns of unvaccinated mothers with mild/asymptomatic SARS-CoV-2 infection during pregnancy using flow cytometry, single-cell transcriptomics, and functional assays. Despite the lack of vertical transmission, levels of inflammatory mediators were altered in cord blood. Maternal infection was also associated with increased memory T, B cells, and non-classical monocytes as well as increased activation. However, ex vivo responses to stimulation were attenuated. Finally, within the placental villi, we report an expansion of fetal Hofbauer cells and infiltrating maternal macrophages and rewiring towards a heightened inflammatory state. In contrast to cord blood monocytes, placental myeloid cells were primed for heightened antiviral responses. Taken together, this study highlights dysregulated fetal immune cell responses in response to mild maternal SARS-CoV-2 infection during pregnancy.


Subject(s)
COVID-19 , Memory Disorders , Phenylketonuria, Maternal , Persistent Fetal Circulation Syndrome
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.29.518385

ABSTRACT

Background: Infection during pregnancy can result in adverse outcomes for both pregnant persons and offspring. Maternal vaccination is an effective mechanism to protect both mother and neonate into post-partum. However, our understanding of passive transfer of antibodies elicited by maternal SARS-CoV-2 mRNA vaccination during pregnancy remains incomplete. Objective: We aimed to evaluate the antibody responses engendered by maternal SARS-CoV-2 vaccination following initial and booster doses in maternal circulation and breastmilk to better understand passive immunization of the newborn. Study Design: We collected longitudinal blood samples from 121 pregnant women who received SARS-CoV-2 mRNA vaccines spanning from early gestation to delivery followed by collection of blood samples and breastmilk between delivery and 12 months post-partum. During the study, 70% of the participants also received a booster post-partum. Paired maternal plasma, breastmilk, umbilical cord plasma, and newborn plasma samples were tested via enzyme-linked immunosorbent assays (ELISA) to evaluate SARS-CoV-2 specific IgG antibody levels. Results: Vaccine-elicited maternal antibodies were detected in both cord blood and newborn blood, albeit at lower levels than maternal circulation, demonstrating transplacental passive immunization. Booster vaccination significantly increased spike specific IgG antibody titers in maternal plasma and breastmilk. Finally, SARS-CoV-2 specific IgG antibodies in newborn blood correlated negatively with days post initial maternal vaccine dose. Conclusion: Vaccine-induced maternal SARS-CoV-2 antibodies were passively transferred to the offspring in utero via the placenta and after birth via breastfeeding. Maternal booster vaccination, regardless of gestational age at maternal vaccination, significantly increased antibody levels in breastmilk and maternal plasma, indicating the importance of this additional dose to maximize passive protection against SARS-CoV-2 infection for neonates and infants until vaccination eligibility. Keywords: Antibody, Booster, Breastmilk, COVID-19 vaccine, Newborn, Passive transfer


Subject(s)
COVID-19 , Spinal Cord Diseases
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.23.457408

ABSTRACT

Pregnant women are an at-risk group for severe COVID-19, though the majority experience mild/asymptomatic disease. Although severe COVID-19 has been shown to be associated with immune activation at the maternal-fetal interface even in the absence of active viral replication, the immune response to asymptomatic/mild COVID-19 remains unknown. Here, we assessed immunological adaptations in both blood and term decidua from 9 SARS-exposed pregnant women with asymptomatic/mild disease and 15 pregnant SARS-naive women. In addition to selective loss of tissue-resident decidual macrophages, we report attenuation of antigen presentation and type I IFN signaling but upregulation of inflammatory cytokines and chemokines in blood monocyte derived decidual macrophages. On the other hand, infection was associated with remodeling of the T cell compartment with increased frequencies of activated CD69+ tissue-resident T cells and decreased abundance of Tregs. Interestingly, frequencies of cytotoxic CD4 and CD8 T cells increased only in the blood, while CD8 effector memory T cells were expanded in the decidua. In contrast to decidual macrophages, signatures of type I IFN signaling were increased in decidual T cells. Finally, T cell receptor diversity was significantly reduced with infection in both compartments, albeit to a much greater extent in the blood. The resulting aberrant immune activation in the placenta, even with asymptomatic disease may alter the exquisitely sensitive developing fetal immune system, leading to long-term adverse outcomes for offspring.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.14.452381

ABSTRACT

mRNA based vaccines for SARS-CoV-2 have shown exceptional clinical efficacy providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used single-cell RNA sequencing and functional assays to compare humoral and cellular responses to two doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4 T cells, and robust antigen-specific polyfunctional CD4 T cell responses in all vaccinees. On the other hand, CD8 T cell responses were both weak and variable. Interestingly, clonally expanded CD8 T cells were observed in every vaccinee, as observed following natural infection. TCR gene usage, however, was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of larger CD8 T cell clones occupied distinct clusters, likely due to the recognition of a broader set of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response where early CD4 T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8 T cells, together capable of contributing to future recall responses.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.11.451964

ABSTRACT

Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There is a critical need to understand the impact of the emerging variants on host response and disease dynamics to facilitate the development of vaccines and therapeutics. Syrian golden hamsters are the leading small animal model that recapitulates key aspects of severe coronavirus disease 2019 (COVID-19). In this study, we show that intranasal inoculation of SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in the United Kingdom (B.1.1.7) and South Africa (B.1.351) led to similar gross and histopathologic pulmonary lesions. Although differences in viral genomic copy numbers were noted in the lungs and oral swabs of challenged animals, infectious titers in the lungs were comparable. Antibody neutralization capacities varied, dependent on the original challenge virus and cross-variant protective capacity. Transcriptional profiling indicated significant induction of antiviral pathways in response to all three challenges with a more robust inflammatory signature in response to B.1.1.7. Furthermore, no additional mutations in the spike protein were detected at peak disease. In conclusion, the emerging VOC showed distinct humoral responses and transcriptional profiles in the hamster model compared to the ancestral virus.


Subject(s)
Coronavirus Infections , Lung Diseases , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.20.445008

ABSTRACT

Much of the research conducted on SARS-CoV-2 and COVID-19 has focused on the systemic host response, especially that generated by severely ill patients. Very few studies have investigated the impact of acute SARS-CoV-2 within the nasopharynx, the site of initial infection and viral replication. In this study we profiled changes in the nasal microbial communities as well as in host transcriptional profile during acute SARS-CoV-2 infection using 16S amplicon sequencing and RNA sequencing. These analyses were coupled to viral genome sequencing. Our microbiome analysis revealed that the nasal microbiome of COVID patients was unique and was marked by an expansion of bacterial pathogens. Some of these microbes (i.e. Acinetobacter) were shared with COVID negative health care providers from the same medical center but absent in COVID negative outpatients seeking care at the same institutions suggesting acquisition of nosocomial respiratory pathogens. Specifically, we report a distinct increase in the prevalence and abundance of the pathogen Pseudomonas aeruginosa in COVID patients that correlated with viral RNA load. These data suggest that the inflammatory environment caused by SARS-CoV-2 infection and potentially exposure to the hospital environment leads to an expansion of bacterial pathogens in the nasal cavity that could contribute to increased incidence of secondary bacterial infections. Additionally, we observed a robust host transcriptional response in the nasal epithelia of COVID patients, indicative of an antiviral innate immune repones and neuronal damage. Finally, analysis of viral genomes did not reveal an association between viral loads and viral sequences.


Subject(s)
COVID-19 , Nerve Degeneration , Bacterial Infections
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.20.21254035

ABSTRACT

BackgroundUnderstanding SARS-CoV-2 infection in children is necessary to reopen schools safely. MethodsWe measured SARS-CoV-2 infection in 320 learners [10.5 {+/-} 2.1(sd); 7-17 y.o.] at four diverse schools with either remote or on-site learning. Schools A and B served low-income Hispanic learners; school C served many special-needs learners; and all provided predominantly remote instruction. School D served middle- and upper-income learners, with predominantly on-site instruction. Testing occurred in the fall (2020), and 6-8 weeks later during the fall-winter surge (notable for a tenfold increase in COVID-19 cases). Immune responses and mitigation fidelity were also measured. ResultsWe found SARS-CoV-2 infections in 17 learners only during the surge. School A (97% remote learners) had the highest infection (10/70, 14.3%, p<0.01) and IgG positivity rates (13/66, 19.7%). School D (93% on-site learners) had the lowest infection and IgG positivity rates (1/63, 1.6%). Mitigation compliance [physical distancing (mean 87.4%) and face covering (91.3%)] was remarkably high at all schools. Documented SARS-CoV-2-infected learners had neutralizing antibodies (94.7%), robust IFN-{gamma}+ T cell responses, and reduced monocytes. ConclusionSchools can implement successful mitigation strategies across a wide range of student diversity. Despite asymptomatic to mild SARS-CoV-2 infection, children generate robust humoral and cellular immune responses. Key PointsO_LISuccessful COVID-19 mitigation was implemented across a diverse range of schools. C_LIO_LISchool-associated SARS-CoV-2 infections reflect regional rates rather than remote or on-site learning. C_LIO_LISeropositive school-aged children with asymptomatic to mild SARS-CoV-2 infections generate robust humoral and cellular immunity. C_LI


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.25.21250189

ABSTRACT

Severe COVID-19 disproportionately impacts older individuals and those with comorbidities. It is estimated that approximately 80% of COVID-19 deaths are observed among individuals >65 years of age. However, the immunological underpinnings of severe COVID-19 in the aged have yet to be defined. This study captures the longitudinal immune response to SARS-CoV-2 infection in a cohort of young and aged patients with varying disease severity. Phenotypic transcriptional and functional examination of the peripheral mononuclear cells revealed age-, time, and disease severity-specific adaptations. Gene expression signatures within memory B cells suggest qualitative differences in the antibody responses in aged patients with severe disease. Examination of T cells showed profound lymphopenia, that worsened over time and correlated with lower levels of plasma cytokines important for T cell survival in aged patients with severe disease. Single cell RNA sequencing revealed augmented signatures of activation, exhaustion, cytotoxicity, and type-I interferon signaling in memory T cells and NK cells. Although hallmarks of a cytokine storm were evident in both groups, older individuals exhibited elevated levels of chemokines that mobilize inflammatory myeloid cells, notably in those who succumbed to disease. Correspondingly, we observed a re-distribution of DC and monocytes with severe disease that was accompanied by a rewiring towards a more regulatory phenotype. Several of these critical changes, such as the reduction of surface HLA-DR on myeloid cells, were reversed in young but not aged patients over time. In summary, the data presented here provide novel insights into the impact of aging on the host response to SARS-CoV2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions , Death , COVID-19 , Lymphopenia
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.426885

ABSTRACT

The ongoing pandemic of Coronavirus disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single dose, fast-acting vesicular stomatitis virus-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (IM) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, IN vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to control animals. While IM and IN vaccination both induced neutralizing antibody titers, only IM vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of IM-vaccinated animals only. Overall, the data demonstrates that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study.


Subject(s)
Coronavirus Infections , Encephalomyelitis, Acute Disseminated , Pneumonia , Vesicular Stomatitis , Immunologic Deficiency Syndromes , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL